Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__dbl1(X)) -> DBL1(X)
SQR1(s1(X)) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> S1(X)
TERMS1(N) -> SQR1(N)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
DBL1(s1(X)) -> ACTIVATE1(X)
SQR1(s1(X)) -> DBL1(activate1(X))
SQR1(s1(X)) -> SQR1(activate1(X))
ACTIVATE1(n__terms1(X)) -> TERMS1(X)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
SQR1(s1(X)) -> S1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
TERMS1(N) -> S1(N)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ADD2(s1(X), Y) -> S1(n__add2(activate1(X), Y))
DBL1(s1(X)) -> S1(n__s1(n__dbl1(activate1(X))))

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__dbl1(X)) -> DBL1(X)
SQR1(s1(X)) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> S1(X)
TERMS1(N) -> SQR1(N)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
DBL1(s1(X)) -> ACTIVATE1(X)
SQR1(s1(X)) -> DBL1(activate1(X))
SQR1(s1(X)) -> SQR1(activate1(X))
ACTIVATE1(n__terms1(X)) -> TERMS1(X)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
SQR1(s1(X)) -> S1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
TERMS1(N) -> S1(N)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ADD2(s1(X), Y) -> S1(n__add2(activate1(X), Y))
DBL1(s1(X)) -> S1(n__s1(n__dbl1(activate1(X))))

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__dbl1(X)) -> DBL1(X)
SQR1(s1(X)) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
TERMS1(N) -> SQR1(N)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
DBL1(s1(X)) -> ACTIVATE1(X)
SQR1(s1(X)) -> DBL1(activate1(X))
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SQR1(s1(X)) -> SQR1(activate1(X))
ACTIVATE1(n__terms1(X)) -> TERMS1(X)

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
Used argument filtering: ACTIVATE1(x1)  =  x1
n__dbl1(x1)  =  x1
DBL1(x1)  =  x1
SQR1(x1)  =  x1
s1(x1)  =  x1
FIRST2(x1, x2)  =  FIRST2(x1, x2)
cons2(x1, x2)  =  x2
ADD2(x1, x2)  =  x1
n__add2(x1, x2)  =  n__add2(x1, x2)
TERMS1(x1)  =  x1
n__first2(x1, x2)  =  n__first2(x1, x2)
activate1(x1)  =  x1
n__terms1(x1)  =  x1
terms1(x1)  =  x1
add2(x1, x2)  =  add2(x1, x2)
n__s1(x1)  =  x1
dbl1(x1)  =  x1
first2(x1, x2)  =  first2(x1, x2)
0  =  0
nil  =  nil
Used ordering: Quasi Precedence: [FIRST_2, n__first_2, first_2] > nil [n__add_2, add_2] > nil 0 > nil


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SQR1(s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__dbl1(X)) -> DBL1(X)
ADD2(s1(X), Y) -> ACTIVATE1(X)
TERMS1(N) -> SQR1(N)
DBL1(s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
SQR1(s1(X)) -> DBL1(activate1(X))
SQR1(s1(X)) -> SQR1(activate1(X))
ACTIVATE1(n__terms1(X)) -> TERMS1(X)

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__dbl1(X)) -> DBL1(X)
SQR1(s1(X)) -> ACTIVATE1(X)
TERMS1(N) -> SQR1(N)
DBL1(s1(X)) -> ACTIVATE1(X)
SQR1(s1(X)) -> DBL1(activate1(X))
SQR1(s1(X)) -> SQR1(activate1(X))
ACTIVATE1(n__terms1(X)) -> TERMS1(X)

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

ACTIVATE1(n__terms1(X)) -> TERMS1(X)
Used argument filtering: ACTIVATE1(x1)  =  x1
n__dbl1(x1)  =  x1
DBL1(x1)  =  x1
SQR1(x1)  =  x1
s1(x1)  =  x1
TERMS1(x1)  =  x1
activate1(x1)  =  x1
n__terms1(x1)  =  n__terms1(x1)
terms1(x1)  =  terms1(x1)
n__add2(x1, x2)  =  x2
add2(x1, x2)  =  x2
n__s1(x1)  =  x1
dbl1(x1)  =  x1
n__first2(x1, x2)  =  n__first
first2(x1, x2)  =  first
nil  =  nil
cons2(x1, x2)  =  cons
0  =  0
Used ordering: Quasi Precedence: [n__terms_1, terms_1, n__first, first, nil, cons]


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPAfsSolverProof
QDP
                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SQR1(s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__dbl1(X)) -> DBL1(X)
TERMS1(N) -> SQR1(N)
DBL1(s1(X)) -> ACTIVATE1(X)
SQR1(s1(X)) -> DBL1(activate1(X))
SQR1(s1(X)) -> SQR1(activate1(X))

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPAfsSolverProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
QDP
                            ↳ QDPAfsSolverProof
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__dbl1(X)) -> DBL1(X)
DBL1(s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

DBL1(s1(X)) -> ACTIVATE1(X)
Used argument filtering: ACTIVATE1(x1)  =  x1
n__dbl1(x1)  =  x1
DBL1(x1)  =  x1
s1(x1)  =  s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPAfsSolverProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
                            ↳ QDPAfsSolverProof
QDP
                                ↳ DependencyGraphProof
                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__dbl1(X)) -> DBL1(X)

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPAfsSolverProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ AND
                          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

SQR1(s1(X)) -> SQR1(activate1(X))

The TRS R consists of the following rules:

terms1(N) -> cons2(recip1(sqr1(N)), n__terms1(s1(N)))
sqr1(0) -> 0
sqr1(s1(X)) -> s1(n__add2(sqr1(activate1(X)), dbl1(activate1(X))))
dbl1(0) -> 0
dbl1(s1(X)) -> s1(n__s1(n__dbl1(activate1(X))))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(activate1(X), activate1(Z)))
terms1(X) -> n__terms1(X)
add2(X1, X2) -> n__add2(X1, X2)
s1(X) -> n__s1(X)
dbl1(X) -> n__dbl1(X)
first2(X1, X2) -> n__first2(X1, X2)
activate1(n__terms1(X)) -> terms1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__s1(X)) -> s1(X)
activate1(n__dbl1(X)) -> dbl1(X)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.